Database: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 19: | Line 19: | ||
==Relative Equilibria (travelling waves)== | ==Relative Equilibria (travelling waves)== | ||
* S1, S2... | * S1, Re=2400, L=2.5D (alpha=1.25) [[File:Re2400.S1.a1.25.tgz]] | ||
* S2... | |||
* M1, M2... | * M1, M2... | ||
* N1, N2... | * N1, N2... |
Revision as of 08:44, 14 March 2016
Below are files that can be manipulated or used as initial conditions, state.cdf.in. A Main.info should be provided with each state file containing parameter settings.
- Files may be loaded with with different parameter settings. If there is a change in resolution, data will be interpolated or truncated automatically.
- The state file contains spectral coefficients of the velocity perturbation. Each component has dimension (N,H,2), where N is the number of radial points, H is the number of Fourier coefficients, and 2 corresponds to real and imaginary parts. Indices [1,H] in the state file correspond to indices [0:H-1] in the code; see Core_implementation#Ordering_the_Fourier_modes.
- For visualisation, data needs converting to real space. See comments in the file matlab/Readme.txt supplied with the code.
To unpack
tar -xvvzf file.tgz
Sample Initial Conditions
- Turbulence at Re=2400. L=2.5D (alpha=1.25) File:Re2400a1.25.tgz
- Turbulence at Re=5300. L=5D, Re_tau approx 180. File:Re5300.Retau180.5D.tgz
- Localised puff at Re=1900, L=50D. File:Re1900a0.0625.tgz
- Turbulence at Re=2400 with m=2 symmetry. L=2.5D (alpha=1.25) File:Re2400m2a1.25.tgz
- Turbulence at Re=4500 in the '2+epsilon' model. L=10D File:Re4500.2eps.a0.314.tgz
Relative Equilibria (travelling waves)
- S1, Re=2400, L=2.5D (alpha=1.25) File:Re2400.S1.a1.25.tgz
- S2...
- M1, M2...
- N1, N2...
Relative Periodic Orbits
- Localised RPO, Lower Branch, Re=1712, m=2, alpha=0.125 (L=25D) File:Re1712.m2.RPO LB.a0.156.tgz
- Localised RPO, Upper Branch, Re=1700, m=2, alpha=0.125 (L=25D) File:Re1700.m2.RPO UB.a0.156.tgz