Database: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
|||
(28 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Below are files that can be manipulated or used as initial conditions, <tt>state.cdf.in</tt>. A [[Main.info]] should be provided with each state file containing parameter settings. | |||
* '''Files may be loaded with with different parameter settings'''. If there is a change in resolution, data will be interpolated or truncated automatically. | |||
* '''For visualisation, data needs converting to real space'''. See comments in the file <tt>matlab/Readme.txt</tt> supplied with the code. | |||
* '''The state file contains positions of radial points and Fourier spectral coefficients of the velocity perturbation evaluated at the radial points'''. Each component has dimension (N,H,2), where N is the number of radial points, H is the number of Fourier coefficients, and 2 corresponds to real and imaginary parts. Indices [1,H] in the state file correspond to indices [0:H-1] in the code; see [[Core_implementation#Ordering_the_Fourier_modes]]. | |||
To unpack | |||
tar -xvvzf file.tgz | |||
==Sample Initial Conditions== | ==Sample Initial Conditions== | ||
* Turbulence at Re=2400. L=2.5D (alpha=1.25) [[File:Re2400a1.25.tgz]] | * Turbulence at Re=2400. L=2.5D (alpha=1.25) [[File:Re2400a1.25.tgz]] | ||
* Turbulence at Re=5300. L=5D, Re_tau approx 180. [[File:Re5300.Retau180.5D.tgz]] | |||
* Localised puff at Re=1900, L=50D. [[File:Re1900a0.0625.tgz]] | |||
* Turbulence at Re=2400 with m=2 symmetry. L=2.5D (alpha=1.25) [[File:Re2400m2a1.25.tgz]] | * Turbulence at Re=2400 with m=2 symmetry. L=2.5D (alpha=1.25) [[File:Re2400m2a1.25.tgz]] | ||
* Turbulence at Re=4500 in the '2+epsilon' model. L=10D [[File:Re4500.2eps.a0.314.tgz]] | * Turbulence at Re=4500 in the '2+epsilon' model. L=10D [[File:Re4500.2eps.a0.314.tgz]] | ||
==Relative Equilibria== | * Turbulence at Re=5300. L=5D, Re_tau approx 180. LES [[File:Re5300.Retau180.5D.LES.tgz]] | ||
* S1, | * Turb in shear-thinning fluid, Re_wall approx 10000, L=5D, Carreau-Yasuda model [[File:Re0160.Rew10000.5D.CY.tgz]] | ||
* M1, | |||
* | ==Relative Equilibria (travelling waves)== | ||
See Pringle, Duguet and Kerswell (2009) for classification according to the [[Symmetries_of_pipe_flow]] that each solution carries. The states feature prominently in the articles indicated below. | |||
* S1, Re=2400, L=2.5D (alpha=1.25) [[File:Re2400.S1.a1.25.tgz]] Pringle and Kerswell (2007) | |||
* M1, Re=775, alpha=1.437 (lowest known Re for a TW) [[File:Re775.M1.a1.437.tgz]] Pringle and Kerswell (2007) | |||
* N2_ML, Re=2400, alpha=1.25 (and leading eigvec.) [[File:Re2400m2.a1.25_N2ML.tgz]] | |||
* N4L, Re=2500, alpha=1.7 [[File:Re2500m4a1.7.N4L.tgz]] | |||
* N4U, Re=2500, alpha=1.7 [[File:Re2500m4a1.7.N4U.tgz]] Willis, Cvitanovic & Avila (2013) | |||
==Relative Periodic Orbits== | |||
* Localised RPO, Lower Branch, Re=1712, m=2, alpha=0.125 (L=25D) [[File:Re1712.m2.RPO_LB.a0.125.tgz]]; Avila, Mellibovsky, Roland and Hof (2013); Chantry, Willis and Kerswell (2014). | |||
* Localised RPO, Upper Branch, Re=1700, m=2, alpha=0.125 (L=25D) [[File:Re1700.m2.RPO_UB.a0.125.tgz]] | |||
* Short-period RPO in minimal pipe, Re=2500, m=4, alpha=1.7 [[File:Re2500m4a1.7.RPO25.65.tgz]]; Budanur, Short, Farazmand, Willis and Cvitanovic (2017). |
Latest revision as of 06:05, 27 March 2023
Below are files that can be manipulated or used as initial conditions, state.cdf.in. A Main.info should be provided with each state file containing parameter settings.
- Files may be loaded with with different parameter settings. If there is a change in resolution, data will be interpolated or truncated automatically.
- For visualisation, data needs converting to real space. See comments in the file matlab/Readme.txt supplied with the code.
- The state file contains positions of radial points and Fourier spectral coefficients of the velocity perturbation evaluated at the radial points. Each component has dimension (N,H,2), where N is the number of radial points, H is the number of Fourier coefficients, and 2 corresponds to real and imaginary parts. Indices [1,H] in the state file correspond to indices [0:H-1] in the code; see Core_implementation#Ordering_the_Fourier_modes.
To unpack
tar -xvvzf file.tgz
Sample Initial Conditions
- Turbulence at Re=2400. L=2.5D (alpha=1.25) File:Re2400a1.25.tgz
- Turbulence at Re=5300. L=5D, Re_tau approx 180. File:Re5300.Retau180.5D.tgz
- Localised puff at Re=1900, L=50D. File:Re1900a0.0625.tgz
- Turbulence at Re=2400 with m=2 symmetry. L=2.5D (alpha=1.25) File:Re2400m2a1.25.tgz
- Turbulence at Re=4500 in the '2+epsilon' model. L=10D File:Re4500.2eps.a0.314.tgz
- Turbulence at Re=5300. L=5D, Re_tau approx 180. LES File:Re5300.Retau180.5D.LES.tgz
- Turb in shear-thinning fluid, Re_wall approx 10000, L=5D, Carreau-Yasuda model File:Re0160.Rew10000.5D.CY.tgz
Relative Equilibria (travelling waves)
See Pringle, Duguet and Kerswell (2009) for classification according to the Symmetries_of_pipe_flow that each solution carries. The states feature prominently in the articles indicated below.
- S1, Re=2400, L=2.5D (alpha=1.25) File:Re2400.S1.a1.25.tgz Pringle and Kerswell (2007)
- M1, Re=775, alpha=1.437 (lowest known Re for a TW) File:Re775.M1.a1.437.tgz Pringle and Kerswell (2007)
- N2_ML, Re=2400, alpha=1.25 (and leading eigvec.) File:Re2400m2.a1.25 N2ML.tgz
- N4L, Re=2500, alpha=1.7 File:Re2500m4a1.7.N4L.tgz
- N4U, Re=2500, alpha=1.7 File:Re2500m4a1.7.N4U.tgz Willis, Cvitanovic & Avila (2013)
Relative Periodic Orbits
- Localised RPO, Lower Branch, Re=1712, m=2, alpha=0.125 (L=25D) File:Re1712.m2.RPO LB.a0.125.tgz; Avila, Mellibovsky, Roland and Hof (2013); Chantry, Willis and Kerswell (2014).
- Localised RPO, Upper Branch, Re=1700, m=2, alpha=0.125 (L=25D) File:Re1700.m2.RPO UB.a0.125.tgz
- Short-period RPO in minimal pipe, Re=2500, m=4, alpha=1.7 File:Re2500m4a1.7.RPO25.65.tgz; Budanur, Short, Farazmand, Willis and Cvitanovic (2017).