Table of unit conversions: Difference between revisions

From openpipeflow.org
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 13: Line 13:
\vec{u} & U_{cl} & U_b & 2 & \mbox{speed} \\
\vec{u} & U_{cl} & U_b & 2 & \mbox{speed} \\
t & R/U_{cl} & D/U_b & \frac{1}{4} & \mbox{time} \\
t & R/U_{cl} & D/U_b & \frac{1}{4} & \mbox{time} \\
\sigma & U_{cl}/R & U_b/D & 4 & \mbox{growth rate} \\
E & \rho\,U_{cl}^2\, R^3 & \rho\,U_b^2\,D^3 & \frac{1}{2} & \mbox{kinetic energy} \\
E & \rho\,U_{cl}^2\, R^3 & \rho\,U_b^2\,D^3 & \frac{1}{2} & \mbox{kinetic energy} \\
D & \rho\,U_{cl}^3\, R^2 & \rho\,U_b^3\,D^2 & 2 & \mbox{dissipation rate} \\
D & \rho\,U_{cl}^3\, R^2 & \rho\,U_b^3\,D^2 & 2 & \mbox{dissipation rate} \\
E' & \rho\,U_{cl}^2\, R^2 & \rho\,U_b^2\,D^2 & 1 & \mbox{energy per unit length} \\
E' & \rho\,U_{cl}^2\, R^2 & \rho\,U_b^2\,D^2 & 1 & \mbox{energy per unit length}  
\sigma & U_{cl}/R & U_b/D & 4 & \mbox{growth rate}
\end{array}$
\end{array}$

Revision as of 07:05, 6 March 2017

$ \renewcommand{\vec}[1]{ {\bf #1} } \newcommand{\bnabla}{ \vec{\nabla} } \newcommand{\Rey}{Re} \def\vechat#1{ \hat{ \vec{#1} } } \def\mat#1{#1} $

The following table gives conversions between 'code' units, based on $R$ and $U_{cl}$ to 'lab' units, based on $D$ and $U_b$. For conversion factor $C$:

$variable~\mbox{('lab' units)} = C \times variable ~\mbox{('code' units)}$.


$\begin{array}{ccccl} variable & \mbox{'code' units} & \mbox{'lab' units} & \mbox{conversion factor}~C & \mbox{comment}\\ \hline r,z & R & D & \frac{1}{2} & \mbox{length}\\ \vec{u} & U_{cl} & U_b & 2 & \mbox{speed} \\ t & R/U_{cl} & D/U_b & \frac{1}{4} & \mbox{time} \\ \sigma & U_{cl}/R & U_b/D & 4 & \mbox{growth rate} \\ E & \rho\,U_{cl}^2\, R^3 & \rho\,U_b^2\,D^3 & \frac{1}{2} & \mbox{kinetic energy} \\ D & \rho\,U_{cl}^3\, R^2 & \rho\,U_b^3\,D^2 & 2 & \mbox{dissipation rate} \\ E' & \rho\,U_{cl}^2\, R^2 & \rho\,U_b^2\,D^2 & 1 & \mbox{energy per unit length} \end{array}$