Table of unit conversions: Difference between revisions
(Created page with "{{latexPreamble}} The following table gives conversions between 'code' units, based on $R$ and $U_{cl}$ to 'lab' units, based on $D$ and $U_b$. For conversion factor $C$: $v...") |
mNo edit summary |
||
Line 8: | Line 8: | ||
$\begin{array}{ccccl} | $\begin{array}{ccccl} | ||
variable & \mbox{'code' units} & \mbox{'lab' units} & \mbox{conversion factor}~C & \mbox{comment}\\ | |||
\hline | \hline | ||
r,z & R & D & \frac{1}{2}\\ | r,z & R & D & \frac{1}{2} & \mbox{length}\\ | ||
\vec{u} & U_{cl} & U_b & 2 \\ | \vec{u} & U_{cl} & U_b & 2 & \mbox{speed} \\ | ||
t & R/U_{cl} & D/U_b & \frac{1}{4} \\ | t & R/U_{cl} & D/U_b & \frac{1}{4} & \mbox{time} \\ | ||
E & \rho\,U_{cl}^2\, R^3 & \rho\,U_b^2\,D^3 & \frac{1}{2} & \mbox{kinetic energy} \\ | E & \rho\,U_{cl}^2\, R^3 & \rho\,U_b^2\,D^3 & \frac{1}{2} & \mbox{kinetic energy} \\ | ||
D & \rho\,U_{cl}^3\, R^2 & \rho\,U_b^3\,D^2 & 2 & \mbox{dissipation rate} \\ | D & \rho\,U_{cl}^3\, R^2 & \rho\,U_b^3\,D^2 & 2 & \mbox{dissipation rate} \\ | ||
E' & \rho\,U_{cl}^2\, R^2 & \rho\,U_b^2\,D^2 & 1 & \mbox{energy per unit length} \\ | |||
\end{array}$ | \end{array}$ |
Revision as of 05:40, 6 March 2017
$ \renewcommand{\vec}[1]{ {\bf #1} } \newcommand{\bnabla}{ \vec{\nabla} } \newcommand{\Rey}{Re} \def\vechat#1{ \hat{ \vec{#1} } } \def\mat#1{#1} $
The following table gives conversions between 'code' units, based on $R$ and $U_{cl}$ to 'lab' units, based on $D$ and $U_b$. For conversion factor $C$:
$variable~\mbox{('lab' units)} = C \times variable ~\mbox{('code' units)}$.
$\begin{array}{ccccl}
variable & \mbox{'code' units} & \mbox{'lab' units} & \mbox{conversion factor}~C & \mbox{comment}\\
\hline
r,z & R & D & \frac{1}{2} & \mbox{length}\\
\vec{u} & U_{cl} & U_b & 2 & \mbox{speed} \\
t & R/U_{cl} & D/U_b & \frac{1}{4} & \mbox{time} \\
E & \rho\,U_{cl}^2\, R^3 & \rho\,U_b^2\,D^3 & \frac{1}{2} & \mbox{kinetic energy} \\
D & \rho\,U_{cl}^3\, R^2 & \rho\,U_b^3\,D^2 & 2 & \mbox{dissipation rate} \\
E' & \rho\,U_{cl}^2\, R^2 & \rho\,U_b^2\,D^2 & 1 & \mbox{energy per unit length} \\
\end{array}$