Differential operators in cylindrical coordinates: Difference between revisions

From openpipeflow.org
Jump to navigation Jump to search
mNo edit summary
m (original form seems most common in fluids)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{latexPreamble}}
{{latexPreamble}}
=== grad, div, curl ===
=== Gradient, divergence, curl ===


$(\bnabla f)_r = \partial_{r}f,
$(\bnabla f)_r = \partial_{r}f,
      \quad
\quad
      (\bnabla f)_\theta = \frac1{r}\, \partial_{\theta} f,
(\bnabla f)_\theta = \frac1{r}\, \partial_{\theta} f,
      \quad
\quad
      (\bnabla f)_z = \partial_{z} f .$
(\bnabla f)_z = \partial_{z} f .$




$\bnabla \cdot \vec{A} = (\frac1{r} + \partial_{r}) A_r  
$\bnabla \cdot \vec{A} = (\frac1{r} + \partial_{r}) A_r  
      + \frac1{r}\,\partial_{\theta}A_\theta + \partial_{z} A_z .$
+ \frac1{r}\,\partial_{\theta}A_\theta + \partial_{z} A_z .$




$(\bnabla \wedge \vec{A})_r  =
$(\bnabla \wedge \vec{A})_r  =
      \frac1{r}\,\partial_{\theta} A_z - \partial_{z} A_\theta ,$
\frac1{r}\,\partial_{\theta} A_z - \partial_{z} A_\theta ,$


$(\bnabla \wedge \vec{A})_\theta  =  
$(\bnabla \wedge \vec{A})_\theta  =  
      \partial_{z} A_r - \partial_{r} A_z ,$
\partial_{z} A_r - \partial_{r} A_z ,$


$(\bnabla \wedge \vec{A})_z  =   
$(\bnabla \wedge \vec{A})_z  =   
      (\frac1{r}+\partial_{r}) A_\theta - \frac1{r}\,\partial_{\theta} A_r .$
(\frac1{r}+\partial_{r}) A_\theta - \frac1{r}\,\partial_{\theta} A_r .$


=== Laplacian ===
=== Laplacian ===


$\nabla^2 f = (\frac1{r}\partial_{r} + \partial_{rr} ) f
$\nabla^2 f = (\frac1{r}\partial_{r} + \partial_{rr} ) f
      +\frac1{r^2}\,\partial_{\theta\theta} f + \partial_{zz} f .$
+\frac1{r^2}\,\partial_{\theta\theta} f + \partial_{zz} f .$


$(\nabla^2 \vec{A})_r  =   
$(\nabla^2 \vec{A})_r  =   
      \nabla^2 A_r - \frac{2}{r^2}\,\partial_{\theta}A_\theta  
\nabla^2 A_r - \frac{2}{r^2}\,\partial_{\theta}A_\theta  
      - \frac{A_r}{r^2} ,$
- \frac{A_r}{r^2} ,$


$(\nabla^2 \vec{A})_\theta  =       
$(\nabla^2 \vec{A})_\theta  =       
      \nabla^2 A_\theta + \frac{2}{r^2}\,\partial_{\theta}A_r  
\nabla^2 A_\theta + \frac{2}{r^2}\,\partial_{\theta}A_r  
      - \frac{A_\theta}{r^2} ,$
- \frac{A_\theta}{r^2} ,$


$(\nabla^2 \vec{A})_z  =   
$(\nabla^2 \vec{A})_z  =   
      \nabla^2 A_z .$
\nabla^2 A_z .$


=== Advective operator ===
=== Advective operator ===


$(\vec{A}\cdot\bnabla\,\vec{B})_r  =  
$(\vec{A}\cdot\bnabla\,\vec{B})_r  =  
      A_r\,\partial_{r}B_r + \frac{A_\theta}{r}\,\partial_{\theta}B_r  
A_r\,\partial_{r}B_r + \frac{A_\theta}{r}\,\partial_{\theta}B_r  
      + A_z\,\partial_{z}B_r - \frac{A_\theta B_\theta}{r} ,$
+ A_z\,\partial_{z}B_r - \frac{A_\theta B_\theta}{r} ,$


$(\vec{A}\cdot\bnabla\,\vec{B})_\theta  =       
$(\vec{A}\cdot\bnabla\,\vec{B})_\theta  =       
      A_r\,\partial_{r}B_\theta + \frac{A_\theta}{r}\,\partial_{\theta}B_\theta  
A_r\,\partial_{r}B_\theta + \frac{A_\theta}{r}\,\partial_{\theta}B_\theta  
      + A_z\,\partial_{z}B_\theta + \frac{A_\theta B_r}{r} ,$
+ A_z\,\partial_{z}B_\theta + \frac{A_\theta B_r}{r} ,$


$(\vec{A}\cdot\bnabla\,\vec{B})_z  =       
$(\vec{A}\cdot\bnabla\,\vec{B})_z  =       
      A_r\,\partial_{r}B_z + \frac{A_\theta}{r}\,\partial_{\theta}B_z
A_r\,\partial_{r}B_z + \frac{A_\theta}{r}\,\partial_{\theta}B_z
      + A_z\,\partial_{z}B_z .$
+ A_z\,\partial_{z}B_z .$
 
=== Velocity gradient tensor ===
 
$\bnabla\vec{u} ~=~ \left[
\begin{array}{ccc}
\partial_r u_r & \partial_r u_\theta & \partial_r u_z \\
\frac{1}{r}(\partial_\theta u_r-u_\theta)  & \frac{1}{r}(\partial_\theta u_\theta + u_r) & \frac{1}{r}\partial_\theta u_z \\
\partial_z u_r & \partial_z u_\theta & \partial_z u_z
\end{array}
\right]
$


=== Toroidal-poloidal decompositions ===
=== Toroidal-poloidal decompositions ===
Line 56: Line 67:


$\begin{eqnarray*}
$\begin{eqnarray*}
      &
&
      \vec{A} = \bnabla \wedge(\vechat{z}\psi) + \bnabla \wedge\bnabla \wedge(\vechat{z}\phi) ,
\vec{A} = \bnabla \wedge(\vechat{z}\psi) + \bnabla \wedge\bnabla \wedge(\vechat{z}\phi) ,
      & \\ &
& \\ &
      \psi=\psi(r,\theta,z), \quad
\psi=\psi(r,\theta,z), \quad
      \phi=\phi(r,\theta,z).
\phi=\phi(r,\theta,z).
      \nonumber &
\nonumber &
  \end{eqnarray*}$
\end{eqnarray*}$


where
i.e.


$\vec{A}_r  =  
$\vec{A}_r  =  
      \frac1{r}\,\partial_{\theta} \psi + \partial_{rz} \phi ,$
\frac1{r}\,\partial_{\theta} \psi + \partial_{rz} \phi ,$


$\vec{A}_\theta  =  
$\vec{A}_\theta  =  
      -\partial_{r} \psi + \frac1{r}\,\partial_{\theta z} \phi ,$
-\partial_{r} \psi + \frac1{r}\,\partial_{\theta z} \phi ,$


$\vec{A}_z  =       
$\vec{A}_z  =       
      - \nabla^2_h \phi .$
- \nabla^2_h \phi \, ,$
 
where


$\nabla^2_h f =  
$\nabla^2_h f =  
      (\frac1{r}\,\partial_{r}+\partial_{rr}) f + \frac1{r^2}\,\partial_{\theta\theta} f .$
(\frac1{r}\,\partial_{r}+\partial_{rr}) f + \frac1{r^2}\,\partial_{\theta\theta} f .$




Line 82: Line 95:


$\begin{eqnarray*}
$\begin{eqnarray*}
      &
&
      \vec{A} = \psi_0\,\vechat{\theta} + \phi_0\,\vechat{z}
\vec{A} = \psi_0\,\vechat{\theta} + \phi_0\,\vechat{z}
      + \bnabla \wedge(\vec{r}\psi) + \bnabla \wedge\bnabla \wedge(\vec{r}\phi) ,
+ \bnabla \wedge(\vec{r}\psi) + \bnabla \wedge\bnabla \wedge(\vec{r}\phi) ,
      & \\ &
& \\ &
      \psi_0=\psi_0(r), \quad
\psi_0=\psi_0(r), \quad
      \phi_0=\phi_0(r), \quad
\phi_0=\phi_0(r), \quad
      \psi=\psi(r,\theta,z), \quad
\psi=\psi(r,\theta,z), \quad
      \phi=\phi(r,\theta,z).
\phi=\phi(r,\theta,z).
      \nonumber &
\nonumber &
  \end{eqnarray*}$
\end{eqnarray*}$


where
i.e.


$\vec{A}_r  =  
$\vec{A}_r  =  
      -r \nabla^2_c \phi ,$
-r \nabla^2_c \phi ,$


$\vec{A}_\theta  =  
$\vec{A}_\theta  =  
      \psi_0 + r \partial_{z} \psi + \partial_{r\theta} \phi ,$
\psi_0 + r \partial_{z} \psi + \partial_{r\theta} \phi ,$


$\vec{A}_z  =       
$\vec{A}_z  =       
      \phi_0 - \partial_{\theta} \psi + (2+r\partial_{r})\partial_{z} \phi .$
\phi_0 - \partial_{\theta} \psi + (2+r\partial_{r})\partial_{z} \phi \, ,$
 
where


$\nabla^2_c f = \frac1{r^2}\,\partial_{\theta\theta} f + \partial_{zz} f .$
$\nabla^2_c f = \frac1{r^2}\,\partial_{\theta\theta} f + \partial_{zz} f .$

Latest revision as of 13:11, 23 November 2020

$ \renewcommand{\vec}[1]{ {\bf #1} } \newcommand{\bnabla}{ \vec{\nabla} } \newcommand{\Rey}{Re} \def\vechat#1{ \hat{ \vec{#1} } } \def\mat#1{#1} $

Gradient, divergence, curl

$(\bnabla f)_r = \partial_{r}f, \quad (\bnabla f)_\theta = \frac1{r}\, \partial_{\theta} f, \quad (\bnabla f)_z = \partial_{z} f .$


$\bnabla \cdot \vec{A} = (\frac1{r} + \partial_{r}) A_r + \frac1{r}\,\partial_{\theta}A_\theta + \partial_{z} A_z .$


$(\bnabla \wedge \vec{A})_r = \frac1{r}\,\partial_{\theta} A_z - \partial_{z} A_\theta ,$

$(\bnabla \wedge \vec{A})_\theta = \partial_{z} A_r - \partial_{r} A_z ,$

$(\bnabla \wedge \vec{A})_z = (\frac1{r}+\partial_{r}) A_\theta - \frac1{r}\,\partial_{\theta} A_r .$

Laplacian

$\nabla^2 f = (\frac1{r}\partial_{r} + \partial_{rr} ) f +\frac1{r^2}\,\partial_{\theta\theta} f + \partial_{zz} f .$

$(\nabla^2 \vec{A})_r = \nabla^2 A_r - \frac{2}{r^2}\,\partial_{\theta}A_\theta - \frac{A_r}{r^2} ,$

$(\nabla^2 \vec{A})_\theta = \nabla^2 A_\theta + \frac{2}{r^2}\,\partial_{\theta}A_r - \frac{A_\theta}{r^2} ,$

$(\nabla^2 \vec{A})_z = \nabla^2 A_z .$

Advective operator

$(\vec{A}\cdot\bnabla\,\vec{B})_r = A_r\,\partial_{r}B_r + \frac{A_\theta}{r}\,\partial_{\theta}B_r + A_z\,\partial_{z}B_r - \frac{A_\theta B_\theta}{r} ,$

$(\vec{A}\cdot\bnabla\,\vec{B})_\theta = A_r\,\partial_{r}B_\theta + \frac{A_\theta}{r}\,\partial_{\theta}B_\theta + A_z\,\partial_{z}B_\theta + \frac{A_\theta B_r}{r} ,$

$(\vec{A}\cdot\bnabla\,\vec{B})_z = A_r\,\partial_{r}B_z + \frac{A_\theta}{r}\,\partial_{\theta}B_z + A_z\,\partial_{z}B_z .$

Velocity gradient tensor

$\bnabla\vec{u} ~=~ \left[ \begin{array}{ccc} \partial_r u_r & \partial_r u_\theta & \partial_r u_z \\ \frac{1}{r}(\partial_\theta u_r-u_\theta) & \frac{1}{r}(\partial_\theta u_\theta + u_r) & \frac{1}{r}\partial_\theta u_z \\ \partial_z u_r & \partial_z u_\theta & \partial_z u_z \end{array} \right] $

Toroidal-poloidal decompositions

Axial form:

$\begin{eqnarray*} & \vec{A} = \bnabla \wedge(\vechat{z}\psi) + \bnabla \wedge\bnabla \wedge(\vechat{z}\phi) , & \\ & \psi=\psi(r,\theta,z), \quad \phi=\phi(r,\theta,z). \nonumber & \end{eqnarray*}$

i.e.

$\vec{A}_r = \frac1{r}\,\partial_{\theta} \psi + \partial_{rz} \phi ,$

$\vec{A}_\theta = -\partial_{r} \psi + \frac1{r}\,\partial_{\theta z} \phi ,$

$\vec{A}_z = - \nabla^2_h \phi \, ,$

where

$\nabla^2_h f = (\frac1{r}\,\partial_{r}+\partial_{rr}) f + \frac1{r^2}\,\partial_{\theta\theta} f .$


Radial form:

$\begin{eqnarray*} & \vec{A} = \psi_0\,\vechat{\theta} + \phi_0\,\vechat{z} + \bnabla \wedge(\vec{r}\psi) + \bnabla \wedge\bnabla \wedge(\vec{r}\phi) , & \\ & \psi_0=\psi_0(r), \quad \phi_0=\phi_0(r), \quad \psi=\psi(r,\theta,z), \quad \phi=\phi(r,\theta,z). \nonumber & \end{eqnarray*}$

i.e.

$\vec{A}_r = -r \nabla^2_c \phi ,$

$\vec{A}_\theta = \psi_0 + r \partial_{z} \psi + \partial_{r\theta} \phi ,$

$\vec{A}_z = \phi_0 - \partial_{\theta} \psi + (2+r\partial_{r})\partial_{z} \phi \, ,$

where

$\nabla^2_c f = \frac1{r^2}\,\partial_{\theta\theta} f + \partial_{zz} f .$